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Linear Bayes Estimators of the Potency

Curve in Bioassay

by

LYNXI KUO

Division of Statistics, University of California, Davis
Davis, California 95616 U.S.A.

SUMMARY

Tne prior distribution on the class of potency curves in quantal bioassay

is assumed to be Ferguson's Dirichiet distribution. Given the integrated

squared error loss and the quantal response data, we derive the Bayes

estimator in a linear space generated by the data. Some numerical examples

and asymptotic results are also given.
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1. INTRODUCTION

.The Bayesian nonparametric approach to estimating the tolerance

distribution in quantal bioassay has received some attention. The

computational difficulty in evaluating these Bayes estimators has hindered

their applications. This paper explores the linear Bayes approach to the

bioassay problem. These linear Bayes estimators can be computed easily by

using statistical software which has the capability of inverting a matrix.

Let us state the quantal bioassay problem as follows: The experimenter

intends to test the potency of a stimulus by giving subjects injections of the

stImulus at differen: levels; namely, he chooses L dosage .evels, t,...,t

' an_:reats n n,... L subjects at these levels resoectivelv. Each subject

possesses a fixed tilerance level. If a stimulus exceeds a subject's

:olerance level, the subject responds positively. If not, there is no

response. Therefore we observe the number of positive responses at each

.1. These n ersare denoteC by -- , 7eh potency curve F is the

ri istribution of tolerance levels; i.e. F is defined by the probability F(t) of

se::..n a positive response to a dosage at level t for all t. The objective

t: this article is to make inferences about the potency curve r. -J' "

The maximum likelihood estimator of F subject to the monotonicity

res:rxc:icn may be found, as in Barlow, Bartholomew, Bremner and Brunk (1971),

:D be a weightec isotonic regression. If we have some prior information of

F, we would expect to do better by a Bayesian nonparametric method. Kraft and

"an Eeen (194) derive an estimate of F by using a tailfree process prior.

ae sayes est:ia:or of F usinz Ferguson's Dirichlet process nrier (1973) has

(1981), and A=:ann (1984). Ramsey discusses the posterior distribution and

oce suded Ramey(272, Atoia (97), hatahaya 191) Ds%
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its mode. He also presents interesting examples to illustrate the desirable

features of the Bayes estimators. Bhattacharya obtains the asymptotic

posterior distribution by means of a Markov Chain formulation. Ammann

generalizes the Dirichlet prior to a class of priors which uses processes with

independent increments.

AnConiak (1974) has treated this problem with integrated loss function

L (, F) = (F-F)dW where W is a known weight function. He has shown that the

posterior distribution of F given the data is a mixture of Dirichlet process

distributions, and he has derived the Bayes estimator of F for two dosage

levels. Unfortunately, this mixture becomes increasingly intractable when the

- c,7 r of stimulus levels increases. It is shown by Antoniak, when L = 2,

"'at a double summation (two indices) can be used to express this mixture;

wna- T = 3, six indices of summation are needed. In general, L(L-1) indices

are needed to represent this mixture. It already takes a substantial amount

f xkkeepng for the mixture even in the case L= 3.ereore

important to search for methods of approximating the Bayes rule.

Disch (1981) proposes two methods for approximating the posterior

diszribution. One method uses a single Dirichlet to approximate the mixture

4 of Dirichlets. The parameters of the single Dirichlet are defined to be a

of k. and I (ni-k.). The other method is a two-step method.

nTe :-. steps involve deleting a subset of observational doses and using the

, above method of single Dirichlet approximation again. As pointed out by

Disch, the drawback of the two step method is that the approximation depends

.M 5c .C
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A linear Bayes estimator is proposed here to approximate the Bayes

estimator. Given the loss function L(F,d) = f(F(t)-d(t)) 2 dW(t), we restrict

the decision rules d(t) in the linear space generated by kl,...,kL and 1. A

linear Bayes rule is the Bayes rule in the linear space. The solution is

given by pointwise minimization. For each t, we find constants

4epemding on t, to minimize E(F(E) - X - Xk! - "k ' X k )-. It is much

-easier to evaluate the linear Bayes rule than to evaluate the Bayes rule

E(F(t) k1 ,...,k ). The former evaluation requires only partial specification

of approximating Bayes rules in some nonparame:ric problems

Dv Baves es:ima:ors within the class of linear combinations of a given set of

f.r' :tions on the sample space has been proposed by Goldstein (1975). He

a;'ies his result to derive linear polynomial estimators of the mean and

=:=ents of the unknown distribution function. However, Co!dstein does not

:-tEa: the bioassay problem. The objective and loss function

s:-Cied here are a'so different from Goldstein's. Integrated loss function is

uset here, since :e objective is to estimate the whole distribution function.

To use 7erguson's process indexed by a, the statistician needs to specify

a. The measure =(-=,ti can be rewritten as MF(t), where M = a(-=,-) and

":, = :.--,= ,.. I: is known that EF(t) = F0 (t) and var(F(t)) =

.. :)(1-F (t))(M-1) where F is the unknown random distribution chosen by the

Ferluson's process. The function F0 represents the statistician's prior belief

n. :"e s "a:= F, an: ' represen:s the dezree of concentration of F aroun.

arge H indicates that F concentrates more around FU.
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The linear Bayes rule d derived in this paper can be summarized as

follows. For t to be one of the stimulus levels, say t = t., the linear
J

Bayes rule d(t.) is a linear combination of F0 (t ) , and k i/n i - F0 (ti) for

i=1,...,L. The coefficients are ratios of two determinants of LxL matrices

where the entries are functions of M, FO, and n ,...nL . For values of t not

at the drug levels, say for example t. < t < t. d(t) can be interpolated
3 j+l9

from d(t.) and d(tj) using F Perhaps the most interesting res-i.r of this
2j+1 0 0

paper is this interpolating formula. It reduced the problem of evaluating

d(r) for each t to the problem of just evaluating L of them, d(t),...,d(t ).

One of the drawbacks of the linear Bayes estimator is that it may

, not be nondecreasing. Fortunately, nonmonotonicity does not occur very often.

If monotonic restriction is a great concern to the user, the pool-adjacent-

violators algorithm (Barlow, Bartholomew, Bremner and Brunk, 1972, pp. 13-18)

can be used for obtaining the isotonic regression on d(t ) ... ,d(tL).

Nevertheless, this rule is not Bayes to the original problem. It is also not

clear what to do for z not at the drug levels. An alternative formulation of

linear Bayes estimation under order restriction might be of some interest and

could be explored later. The present paper adopts the one without an order

restriction for computational simplicity. This formulation enables us to

cerive the interpolating for.uLla given in Theorem 2 for the linear Bayes rule.

K The deneral discussion on the Dirichlet process and the mathematical

mode' for the quanta! bioassay is given in Section 2. The derivation of the

linear Bayes estimator is given in Section 3. Some asymptotic re-ii1t, and

" . i ,. i~,, s  b L= i r f r jr . c 1[. c Lfu t lhlinear B.,yes ruit:s art .- =

Sections 4 and 5. A numerical example comparing the Bayes estimators and

. - .



5

linear Bayes estimators for L = 2 is given in Section 6. A SAS program is

given in the appendix to illustrate the ease of computing linear Bayes

estImators in practice. The program computes the linear Bayes estimators for

all possible observations for n, = n2 = 3. The PROC MATRIX procedure which

has the capability of inverting a matrix is used. Another numerical example

[ given in Section 7 using the data in Cox (1970, p.9) illustrates the use of

linear Bayes estimators in practice.

2. PRELIMINARY WORK

A brief description of the Dirichlet process and the quantal bioassay

pr-blem is given here.

J Ferguson (1973) cons:ructs a prior on the space of distribution

functions. The prior indexed by a chooses a random distribution function ?.

This is denoted by P-D(a). The prior can be defined as follows. Given any

--------  a he. the jn-r dist ribution of the r3nAo-

prooaIili :es P(B ) is a Dirichie: distribution with parame.ers
1

a B =( I )  .... :I(B k).

Given the loss function

L(F,F) = j (F(t) - F(t)- dW(t),

* is shoWn, by Ferguson that the Bayes estimator of F for the no sample

- problen i

(t) = EF(r) = a(--,t]./a(R) = MFo(t)/M = F0(t).

-. Bavs est-imator of F, when we observe a sample x,, .. ,x from F, i-

% %"

%e 7.yAa-------L

%. .':
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n

F n(t) = E(F(t) x,...,xn ) = {a(--,t] + F I(x it)}/(M+n)

M= -- F (t) + -- FnCt)
M-n 0 M+n n

where F is the sample empirical distribution function.
n

Recall the bioassay problem, ki is the number of subjects react

positively at the stimulus level ti . Therefore, the likelihood function is

given by

# L

*, " L(F) = t' (i) {F(ti)}ki {1-F(ti)}n-ki (2.1)
i= i

Given :he Ferouson's prior F D(a) and L = 2, it is shown by Antoniak that the

posterior distribution of F is a mixture of Dirichlet processes. Define

SI2 = 2.-( ), and zO = M(I-F 0 (t 2 )). It is shown byMF0 ~ ( P3 -F

An:oniak. that the posterior distribution of F(tI), F(t2)-F(t I), is given by

. .

a. D(I + , 2 +nI 1k ' 3+n2-k2 +j (2.2)-i= 5=3 -i +i, -i +ik , n2 ) 2

where the i xi'ng indices are

k2 nl-kl

a.. b./Z = = b.. and
1 e i=O j= ' * )

,,, ~~bi = "n-rk7 .i,'k2)j 7(-2+k 1 -i) r( F ( +n l -1 k2k -i-j)F ( 2  ( 3 p( 3+n)-k9+J)

* re~)r(02) r(q,3)

.ntoniak has als given a good heuristic explanation for the mixture. While it
4

is k:nown tna: -c, otservacions fall in (,3,c2 and n -k observations fail in

(ti,1], we don't know how many of the k2 fall in (0,t] and how many of the

n -k fall in (t,,11. Let i denote the number of observations in (O,t1

. arising from k2,, and let j denote the number of observations in (t2,1) arising

I

.!
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from n -k 1. Since i and j are unknown, the posterior distribution is a

mixture over all possible values of i and j given by the double summation in

the expression (2.2).

The Bayes estimators can be obtained as

) k2  nj-k.

) =O j=O a M + e + i
i=O j=jM +n 1  2

k, n1-k1  + Bo + nl + ki - j
i=O j=O j M + n1 + n2

When L = 3 it takes six summations to describe this mixture. In general

it takes L(L-1) summations to describe the mixture. To circumvent the

difficulty in computing the Bayes estimators, the linear Bayes estimator is

proposed and derived in the next section.

3. DERIVATION OF THE LINEAR BAYES ESTIMATORn=

.,iven the loss function L(F,d) =  (F(t)-d(t))2dW(z), the linear Bayes

estimator is obtained by minimizing the function E(F(t)-d(t))- for each t.

Let us first restrict our attention to estimating F(t) at the stimulus levels,

.-. namely when t = tip j=l,...,L. The following Theorem I says that d(t.) is

d actually a sum of F0 )(t and a linear combination of ki/n i - F (t i ) i=i ,L

wthere the coefficients depending on t, ... t, can be computed from the

determinants of certain covariance matrices.

We need the following two notations for Theorem 1. Let cov(k) denote the

covariance matrix of kl,...kL and let A( ,) denote this matrix with the ith

column replaced by [covlk 1,Fit)), cov(k2,F(t)),...,cov KL,Fit)), namely

V".Sr"

-.: 1,
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i thcolumn

var k, cov(k.,k.)) ... cov(k 1,F(t)) ... cov(k I kL)

1'cov(klk) var k2 cov(k2,F(t))V... , • k vr

• .V

L cov(k I k L cov(k LF(t)) vat kL

.heore- i: in the bioassay problem, let us assume

(1) the potency curve F(t) is a random distribution chosen from the

"irichlet process with parameter MF (t) (--<t<-);

(2) n...,n, subjects are treated at stimulus levels <to< K <
1 2

respe::e-l, and k...., k are the observed numbers of subjects that react
L

posi:ively a: each level;

(3 the loss function is L(F,d) = J(t)-d(t)) d,(t).

-- -eric our t. tU e class of linear comoinazions of

_. , ar: :or each t, then the Bayes rule in this class, evaluated a, the

- _ ees , .. ,L is given as follows:

L
d(t.) F0 (t.) + x nXi(j) (k./n. - Fo(ti)) (3.1)

-Ii=1

where-0

x. xi(j) = A(i,tj)j/1cov k (3.2)

- *j denotes the determinant of matrix *.

'p..

4.xi. L .
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PROOF. Given t - t, we seek Xo(j),...,XL(j) to minimize

v~.E(Ft.)L 2( E(F( - j-) z X ) ,

where E denotes the expectation over the joint distribution of the observations

and the parameter F(t ). Differentiating ¢(X) with respect to XO(j) ....XL(j)• J

respectively, we obtain L±I normal equations:

E(F(t.) - o(j) - - X.(j)k i ) k - 0, 0 =O,...,L,
i=1

where k = i.

Therefore, froz :-e equation frZ = 0, we obtain

L
.'() = EF(t.) - x. i(j) E(ki). (3.3)

sex-ression :or Xinto each of the L equations with Z=l

and solvin- the system of L linear equations, we obtain

\iJj) = iA(i,t.)j/;covk! il,....L.

, e,= rrom- e ,.q on (3.3'

L
X 0. = F 0 7 X i (j)n i F (t i) ,

J O 1 +Uii'

d(t) 7 X0(j)

= F (t.) Tnix.(J) (k./n. - F (ti)).

-a.
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Remark: The coefficients X could also be derived by matrix

multiplication, i.e.

.," .i'I i(j) cov(k I , F(tj )

(coy k) L3.4)
"]- : (J) cov(k.,F(t)

'et us compute the entries of cov k, and A(i,t which are needed to

evaiua~ k (j)

d",.. For =i,...,L

:.[. ... va r k t  = ,i= ... - \ v -_ E= k . F)],

F-- )( )-F4.=ll , ( ) ' 1r ))1v r 1.

.2 = 2 , -n .t): ~ )'"l-n Ot)1F~i)(. 1 )

'p.F

S<

..- n. .F.(:.)I-Fs(t2))(M if i > j; and

7 T

-":"... = ~-. .:',. )F(:. - n .EF:._.=() EF'(t. )

-K:-= (3.5)

,p.:

'aJ.,

'pIt-
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Next, we want to estimate F(t) for t other than the drug levels, for

example t <t~t. We can find d(t) for each t by the same method as inj j+1

Theorem 1, where t. is replaced by t in equations (3.1) and (3.2). If d(t) can
J

easily be derived from Fo, d(t.), and d(t j+), then time and effort can be

saved in estimating F(t), since we no longer need to compute the determinant of

A(i,t) for each t. The following theorem enables us to linearly interpolating

d(t) by using d(tj) and d(t j+).

Theorem 2: With the assumptions of Theorem 1, and restriction of decision rules

to linear combinations of kl,...,kL, and 1, the Bayes rule for F(t) is given by:

F-(t. )-Fo(t) FO(r) - F 0 (t.)
d~t t - Ct.) d(r ,) + )- -d(t +)

>O(j+) 0 J F0 (t j+ I  0

for t . < t < t j=O,...,L with F)(t 0 o d(t O )

FOCtL+) = 1 = d(tL ).
F0 (tL+1 d L+1

?ROOF. B-. :he same method as Theorem 1, we obtain

L
d~t) = Fo(t) n n X.(t) (ki/n. F (

0 2 . 2. 2. 0 i' - i=1

L
= x0 (t) + z Xi(t)ki, (3.6)

- i=1

where k.(t) = F (t) - E n(r) n i F (ti), and X (t),i1,...,L is obtained
0 i=I 02. 2 =

- from the right side of the equation (3.4) with F(t.) replaced by F(t). Note

that th" entries cov(k.,F(t)) can be computed similarly as in equation (3.5).
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cov(ki,F(t)) " ni F 0(t )(1-F(t))/(M+1), if ti  t,

n i F (c)(l-F (C ))/(!4+1), if ti > t.

For t < t < t , it can be verified that for i1l.,L33 j+0

,...FFt))= cov(ki, (tj )-F - k -

.F (0tj )- (i' r j+1 F o(tj )-F (t) "(3.7)

.hen by a straightforward matrix multiplication using equations (3.4), (3.6)

an* (3.7), we can show

F_(: , )-o~t) F,(t)-F, (t.)4W =;,, = _-_.______v v __ (j1 "

~.~.'.)~o ~dc F • d(:..J J J*j' (t ~)-Fo(rj '

F F
- U 0 J,

4. ASYMPTOTIC RESULTS FOR d(t).

zy evaluazing k (j), we are able to show d(t.) is an as'y=ptoticallv unbiased

::nsi.s:en: eszi:za:or of F(.).

-.ezre= 3: Given the assu:tions of Theorem 1, let n for all Then

:- - -,), and d(t.) is a weakly consistent estimator of F(t) for

:R2F. Fr3z e-.:a:ion (3.1), we have:

L

d = F (t. + n xk (j)Ck.i/n - F 0(t (413 ~ 3 ~ i i1i 0 i'

-N,' ~
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It can be verified, by evaluating equation (3.2), that
(

0(1/n.) if i*j,

nii(J) -

L
I + O(1/ni) if i j.

Therefore,

L
E(d(t.)IF) - F (t ) + n -ii(j)(F(ti Fo(td)

L
F (t + (1 + O(1/n )I(F(t) - F (t))
0 j .i 0.O

) L
+ ' 0(1/n.)(F~c.- F (t)

j 0 i

F(t.) as n. * c for i=1,...,L. (4.2)

Then, from equa:ions (4.1) and (4.2),

L2
var(d(tj) F) E .(j)C(K.n.) -F(

: Jj

L 2" 2

= n 2-(J) var(ki/n.)
i= ii 2

+ i xi(j) nX)(j) cov(ki/ni, kZ/n)
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L 2
- (1 + r 0(1/n )) • F(tj)(1-F(t.))/n.

O(I/nOw ) • F( i)(1 - F(t i))/n i

-. 0 as n. . m for i=1,...,L.
A 1

(Note that given F, ki is independent of k I'

Therefore,

d(r.) is a consistent estimator of F(tj).

5. LIMITING BEiAVIOUR

Given the case M + 0, we will show d(t.) - k /n As M w, a straigaht-

forward evaluation of i(j) will show that X.(j) * 0. Also, d(r.) * F0 (t).

These results are expected. The evaluation for M+= is omitted.

Corollary 1: From the result of Theorem I,

1i d(r.) = k/n. for j--,...,L. (5.1)

?R3OF. First, let us show, for a fixed j:

iim X.(j) = for i1,...,L, (5.2)

1/n. if i=j

where X,(j) are defined by equation (3.2).

We need to consider the following three cases:

(1) If i < j, then .i(j) = IA(i,t.)I/Icov kj.
rh t~h

a-n M-9, the j colu--n is proportional to the i column i- the numerator.

inerefore, iim X.(j) , U.

(2) If i > J, then lir X i(j) a 0.

'Lil
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This is verified in a similar manner to (1).

(3) If i-j, then X.i(j) = IA(j,t.i)I/Lcov ki.

When M - 0, we can factor n.i from the jth column of the denominator, and show the

ratio of the two remaining determinants -* 1. Therefore, lim X.(i) = 1/n..
14+ 0O

From equation (3.1), we have

La
lim d(t.) = Ur [F (t. + I n.iX .(j)(k In - F 0(t )]

~M-)- M-* 0 i=1 i

F F(t4) + (k./n. F F(E4)) = k./n.
0 J J i i

Antoniak has given an example for M *0 with n, = n, 100, k, = 1,k =99,
1 2

= /3, t., = 2/3, and F (t) = t =-[0,1]. He obtains the Bayes estimate, L 10

-'F13 F(2/3) = 1/2 and F(t) is piecewise linear or, [0,11 (F(O) =0, F(l1)=1)

-he li.near Baves estimate in this case is given by d(1/3) 1/100, d(2/3)=

99/10 0 and d(t) is piecewise linear (d(O) =0, d(l) =1). Paradoxically, the

linear Bayes escimate d in this case is intuitively more reasonable than the

-ual. Bayes rule F.

6. C0M'ARISON OF LINEAR BAYES TO BAYES ESTIMATES

Comparisons between Bayes and linear Bayes estimates are made in this

sec:ion. For L-2, the Bayes estimator of F can be evaluated as in Section 2.

L:us assume n1 = n 2= 3, i.e. three subjects are tested at each stimulus level.

The linear Bayes estimates and the Bayes estimates evaluated at the two drug

Icv,=i wi th difrcii ':, ar- givcrr In TabIc 11 and Tabl.e 2 I'Vr all Ltic pussi I 04

values of k Iand k 2* The prior probabilities for each of the events are also

L~~~ ~ ~ ~ 2Wi A 11111,1 111111
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given in the last column. The prior probabilities are evaluated by E(L(F))

with L(F) given by equation (2.1) with appropriate n,, n2 , k1 and k,. Both

tables use the same F0 , standard normal distribution, M=1 and M-10 are used

respectively in Table I and Table 2. The stimulus levels are administered at -1

and 1. It can be seen that the linear Bayes estimates approximate the Bayes

estimates fairly well for M=10. For M=1, the approximation is satisfactory for

the cases k, k The worst case occurs for the case k1 . 3 and k 0.

Fortunately, the prior probability for this event to occur is only 0.0002.

7.NMERIC" ELAY1-LE

The da:S f7r this example are taken from Cox (197.) p. 9). In all, 150

subjects are tested at 5 different concentrations of the stimulus with 30

subjects at each of the dosages. The numbers of deaths are recorded

respectively a: the dosage levels. Three different priors, -(2,0.5), N(,1)

and N'2,4) wi:h various M are used for computing the linear Baves estimates

evalua:ed a: :he five dosages.

i: can be observed that the linear Bayes estimators are not monotonic in

Ass M -ncreases, the linear Bayes estimates approach the prior guess

F as expec:ed. 'hen X=I, the linear Bayes estimates are relatively insensitive

to the choice of the prior guess. They are all close to the isotonic maximum

!~
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8. CONCLUSIONS

The nonparametric Bayesian method is applied to estimate the potency

curve in the quantal bioassay problem. To circumvent the computational

difficulty in evaluating the Bayes rule, the linear Bayes estimator is

proposed. The linear Bayes estimate can be obtained easily by linearly

interpolating the estimates evaluated at the dosage levels. To obtain the

estimates at the dosage levels, it is required to invert a LxL matrix which

can be done by many standard statistical packages. Some numerial examples are

given to demonstrate the ease of obtaining the linear Bayes estimate.

-i,

-,.

..

I.
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Table 1. Comparison between linear Bayes and Bayes estimates

M-1 F 0 (t) 0.1587 F 0(t 2) 0.8413

Prior
Observations Linear Bayes Bayes Probability

d~t ) d( 2)F~t F~t) 1

0 0 0.0101 0.2089 0.0227 0.1964 0.0599

0 1 0.0221 0.4572 0.0372 0.4-22 0.0632

2 20.03421 0.7055 0.0419 0.6978 0.i) 5

j 3 o.o462 0.9338 0. 0- .15 0.9585 0 .5 801

1 (u 0.2584 0.2209 0.1655 0.1136 0.)0 -9

1 1 0.2704 0.4692 0.23t)8 0.5029 0u 09 2

1 2 0.2825 0.7175 0.2555 0.7145 0.0163

i 3 0.2945 0.9656 0.302Z2 0.9581 0.09-5

u 0.5067 j.2330 0.3084 0.4313 0 .0 012

2 1 0.5187 0.4813 0.4085 0.5915 6 ,3

- 0.5308 0.7296 .97 0.63 0.3092

2 3 0.5428 0.9779 0.5578 0.9b28 0.06312

3 00.7550 0.2450 0.4512 0.54S88

3 1 0. 7670 0.4933 0.5687 0.6916 0.00ul12

3 20.7791 0.7416 0.6862 0.8345 0 .30 -19

3 3 0.7911 0.9899 0.8036 0.9773 0.01599

1111 11 ,
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Table 2. Comparison between linear Bayes and Bayes estimates

.1-10 F 0(t 1) 0.1587 F 0(t 2) 0.8413

Prior
Observations Linear Bayes Bayes Probability

k I k 2d(t 1) d(t2 ) F(t 1) ;(t 2) pr

u 0 0.0941 0.6431 0.0992 0.6380 0.0078

S 1 0.1052 0.7195 0.1087 0.7161 0.0523

- 0.1164 0.7961D 0.1178 0.7946 0.1824

J 3 0.1-17t 0.8724 0.1264 0.8736 0.3823

0.1705 0.6543 0.1617 0.6631 0.0028

1 10.1817 0.7307 0.1767 0.7357 0.0207

10.1929 0.8071 0.1913 0.8087 0.0797

30.2040 0.8836 0.2054 0.8812 0.1824

20.2469 0.6655 0.2242 0.6882 0.0006

2 10.2581 0.7419 0.2444 0.560.0048

2 - 0.2b93 0.8183 0.2643 0.8233 0.0207

2 3 0.2805 0.8948 0.2839 0.8913 0.0523

*3 o 0.32314 0.6766 0.2867 0.7133 0.0001

3 1 0.3345 0.7531 0.3118 0.7758 0.0006

3 2 0.3457 1.815 0.3369 0.8383 0.0028

3 3 0.3569 0.9059 0.3620 0.9008 0.0078



Table 3. Linear Bayes estimates for Cox's data

t, 2(Concentration) 0 1 2 3 4

No. of death 2 8 15 23 27

'K ./n 0.067 0.267 0.500 0.767 0.900

l =

F 0(t) 0.0000 0.0228 0.5 0.9773 1.000

M (O) d(1) a(2) d(3) d(4)

1 0.0645 0.2606 0.5005 0.7706 0.9032

32 0.0334 0.1594 0.5022 0.8-91 0.9499

u. .j 155 0.0694 U.5007 0.9125 0.9769

0.0001 0.0497 0.5002 0.950b 0.9909

0.0038 0.0397 0.5001 0.9605 0.9943

Z 8 = 9,.,7)

"F.u22o 0.1587 0.5 0.8413 0.9 " -2

0.0656 0.2633 0.5007 0.7676 0.902"

-0.0476 0.2149 0.5026 0.7939 0.9375

0.0349 0.1854 0.5011 0.8172 0.9584

0.0277 0.1694 0.5003 0.8313 0.9697

-.0259 0. 1' 54 0.soU2 0.8-A50 0.9725

[:,[,(:. =X(2,4)
.p,. .. .

0.3085 0.4013 0.5 0.5987 0.6915;

.0794 0.12692 .5019 0.7575 0.8922

.2115 0.3380 0.5020 0.6667 0.7329

130 0.2675 0.3741 0.5008 0.6276 0.7307

3,00 U.2931 0.3910 0.5003 0.6097 0.70(4

0.2990 0.3949 0.5002 0.6055 0.7007
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APPENDIX: SAS source program for computing the linear Bayes estimates.

DATA CBS;
INPUT 01-02;
CARDS;
0 0
0 1
0 2

3 2
3 3

DATA SIZE;
INPUT S1-S2;
CARDS;
3 3

3 3

VATA PARA-M;
P 1=PROBNOR(-I1);
P 2=P ROBNOR M( I)
M= 1;
PROC MATRlX;
FETCH 0 DAT"A=03S;
FETCH N DATA= STZE-;

FETCH B DATAPAR.:A;
MB( 1 3);

DCO K-1 TO 16;
X=J(L,L);
C=L(L,L);
.A=j(L,L);
LAk'M A-( I,1 , L)
EST=J( 1,L);

DO 1-1 TO L;

END;
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APPENDIX: Contined....

DO 1-2 TO L;

S DO J=l TO I-1;

X(J ,I)=X(I ,J);
END;
END;

DO J-1 TO L;
DO I=1 TO L;
IF I<=J THEN DO;

ELSE DJO;

END; N( , ) B( , ) ( -B l l )q ( + )
END;
ND;

-~ DO J=I TO L;
At. ,J)=1N%(X)*C( ,J);

LAST(i ,J)=(I,J '*O(,) LNJ(,);*

OK=O(K,);
?RINT OK A LA.,-A EST;
FREE X C A LMIlA EST;
END;



2

P

P

.4..-. ~4ZU
p.

4%

4 S

.J.h
4,,

4,

-p p/tm

~.4.

44

44J

b S- 0 0 0 0 S 0 0 0 0 0 * -. i, *-.

~ ~ 4, ~ j~J. V 4 I~ ~ ~. /' .\. \~.V' ~\* * ~ 44~

4.....44 *~4


